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Abstract

Within the MSC/NASTRAN DMAP module TRD1, solving physical (coupled) or modal (uncoupled) transient

equations of motion is performed using the Newmark-Beta or mode superposition algorithms, respectively. For
equations of motion with initial conditions, only the Newmark-Beta integration routine has been available in

MSC/NASTRAN solution sequences for solving physical systems and in custom DMAP sequences or Alters for
solving modal systems. In some cases, one difficulty with using the Newmark-Beta method is that the process of

selecting suitable integration time steps for obtaining acceptable results is lengthy. In addition, when very small step

sizes are required, a large amount of time can be spent integrating the equations of motion. For certain aerospace

applications, a significant time savings can be realized when the equations of motion are solved using an exact

integration routine instead of the Newmark-Beta numerical algorithm. In order to solve modal equations of motion

with initial conditions and take advantage of efficiencies gained when using uncoupled solution algorithms (like that

within TRD1), an exact mode superposition method using MSC/NASTRAN DMAP has been developed and

successfully implemented as an enhancement to an existing coupled loads methodology at the NASA Lewis Research
Center.
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Nomenclature

Abbreviations

Degrees-of-freedom
Direct Matrix Abstraction Program
Lewis Research Center

National Aeronautics and Space Administration

Space Transportation System (Space Shuttle)

Matrices

Steady-state accelerations

Damping
Stiffness
Mass

Applied forces
Modal initial conditions

Physical displacements
Physical accelerations
Mode shapes
Modal displacements
Modal velocities

Modal accelerations

Set Notation

a-set (analysis DOF)
Elastic modal DOF

h-set (system modal DOF)
Rigid-body modal DOF

Shifted

Steady-state

Superscripts



Introduction

Linear transient response analyses can be performed with MSC/NASTRAN in either physical or modal space. In

many aerospace applications, the size of the physical system, in terms of the number of DOF, is large. Hence, the
cost associated with directly solving for transient responses is prohibitive. Using the mode-superposition method, the

physical system is reduced to a modal system. The number of modal DOF required for accurate transient analysis

is usually much less than the number of physical DOF, and the resulting equations of motion are uncoupled. Hence,

solving for the system response in modal space is usually much more efficient.

For most aerospace applications, the system is free-free and is assumed to reach steady-state equilibrium before the

transient analysis begins. Hence, initial conditions exist. Such is the ease for STS liftoff and landing transient

analyses. These analyses can be performed directly in physical space, but doing so is usually very costly due to the

number of physical DOF. It is more efficient to solve for the system response in modal space. When using

MSC/NASTRAN solution sequences to solve modal equations of motion without initial conditions, the uncoupled

solution algorithm [1] within DMAP module TRD1 is used. Unfortunately, solving modal equations of motion with

initial conditions using MSC/NASTRAN solution sequences is not possible. Solving for modal transient responses

when initial conditions are present can be done using custom DMAP or altered MSC/NASTRAN solution sequences.

The NASA Lewis Research Center has had the capability for solving such systems for many years via custom DMAP

sequences [2]. The only limitation is that because initial conditions are present, the logic within module TRDI routes

execution to the coupled solution algorithm [1]. This algorithm is a variation of the Newmark-Beta method [3]. The

Newmark-Beta method is an unconditionally stable algorithm [4]. However, the algorithm has been observed in some

cases, as with STS liftoff analyses, to be computationally inefficient. While the routine will converge to an answer,
very fme integration intervals are usually required to obtain accurate results. This translates into lengthy analysis

times and high costs.

In order to take advantage of the uncoupled solver within module TRD1, a method was developed whereby the total

system modal response is solved for as the sum of two modal responses. Due to the linearity of the system, the input

loads can be represented as the sum of two applied loads. One load is the initial load applied to the system at time
t=0.0. The second load is the difference between the total and initial applied loads. This second (shifted) load can

be regarded as the input load time history with the horizontal axis shifted by the value of the initial load. Thus, the

shifted transient load at time t=0.0 is equal to zero. The modal responses due to the initial load are the steady-state

elastic and rigid-body modal initial conditions of the system. The responses are solved for using custom DMAP. The

modal responses due to the shifted transient loads are solved for using the uncoupled algorithm of module TRD 1.

This is possible since the zero load at time t=0.0 translates into zero initial conditions. Hence, the logic within TRD1

allows for the use of the uncoupled solver. Since the responses are assumed linear, the total modal response is the

sum of the shifted transient and steady-state responses.

The theory detailing the new exact mode supeq_osition transient response methodology is presented in the next

section. Following that, the implementation of the solution algorithm within the existing NASA LeRC coupled loads
methodology is explained. Lastly, the solution process is illustrated with a numerical example for which an analytical
solution is obtained.

Theo_

For a given aerospace system, the coupled loads analysis process begins by assembling component models to form

a system model. Generally, damping is ignored at the component level, so the assembled physical equations of
motion for the system over all time instants are

tM.,][il,] ÷ _u][uj " IPa] (l)

where the number of columns of the physical _esponse and load matrices is equal to the number of integration time

instants. The ith column of each response matrix corresponds to a solution vector at the ith instant of time. For many



applications such as STS analyses, the analysis is performed on a free-free system assumed to reach steady-state

equilibrium. By performing a system level eigenvalue analysis, a set of h mass normalized system mode shapes,

[qbah], are obtained. These consist of rigid-body and elastic mode shapes. The number of associated system modal

DOF are usually much less than the original number of physical DeF. Using the mode-superposition method, the
physical DOF are expressed in terms of the modal DOF, or

[Ua]'_[@ah][_h] (2)

and

[ii,],,[_h][_h] (:3)

where _ are the system modal DOF comprised of rigid-body and elastic partitions.

Substituting the expressions of Eq. (2) and Eq. (3) into Eq. (1) and prvmultiplying the resulting equation by the

transpose of the system mode shapes, the system equations of motion are transformed and reduced from physical

to modal space. The resulting system modal equations of motion are

[Mhh]['_h]+ [Khh][_h] = [Ph] (4)

where

[Mhh] _ [_ah]T[lVIaa][qbah] (5)

[K_] - [¢_h]'r[Ku][C,h] (6)

and

[r'_ ,, [¢_]TtP_I (7)

Note that [Mhh] and [Khh] are diagonal matrices. Since the system mode shapes are mass normalized, [Mhh] is an
identity matrix, and the terms of [Khh] are the systom eigenvalues. In most aerospace applications, the effects of

damping are represented using proportional damping at the system modal level. Hence, the system damping matrix,

[Bhh], is also diagonal. Adding the effects of system damping to Eq. (4) results in the final system modal equations
of motion

[Mhh]t_h] + [Bhh][_h] + [Khh][_h] = ['Ph] (8)

Equation (8) is a set of h uncoupled single DOF system equations of motion.

The modal input loads over all integration times are [Phi" For the ith integration time instant, the modal load is {Pih}.

This load is equal to the steady-state equilibrium load at time t=O.0, {Phl}, plus the complementary (shifted) load,

or



{phi} = {p/} + {t,h_i,sh,i (9)

Hence, the modal loads over all time instants are

[Ph] -- [Ph1] + [Ph h] (10)

where each column of[P l] is {Phi}, and the ith column of [p_h] is {p_,sh}. It is important to note that the first column

of [-P_lh]is{0}.

Since the applied loads can be expressed as the sum of two loads as shown in Eq. (10), the system modal equations
of motion are written as

[Mhh][_ h] + [Bhh][_ h] + [Khh][_ h] - [ph sh] + [Ph1]
(11)

Lineadty allows the total modal response to be equal to the sum of the responses due to each loading condition. The

modal response due to [p_h] is a shifted transient response, and the modal response due to [P_] is a steady-state

response. The two system modal equations of motion from which the two responses are obtained are

tMhh][  hI + [Bm]t  h] + tKhh][  ] " tp_hI (12)

and

(13)

Hence, the total modal displacements, velocities, and accelerations at each time instant ti are

{_ih} i,sh i,ssw {_h } + {_h } (14)

(15)

(16)

Due to the fact that the initial loads in Eq. (12) are equal to zero, initial conditions are equal to zero for the shifted

transient analysis. Hence, the shifted modal responses can be obtained using an exact uncoupled integration routine
like that found within DMAP module TRD1.

The initial conditions for the system are considered with the steady-state response of Eq. (13). The modal

displacements (and velocities and accelerations) can be separated into r rigid-body and e elastic responses, or
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Accordingly, Eq. (13) can be partitioned into rigid-body and elastic modal equations of motion, or

•"ss "ss ss [prt ][Mrr][_r ] + [Brr][_ r ] + [Krr][_ , ] =

and

" SS " .qS ,qS J[Mee][_e ] + [Beeline] + _e_][_] --[v]

(17)

(18)

(19)

Tile elastic portion of the steady-state response is given by Eq. (19). Before the analysis begins, the system is
assumed to reach steady-state equilibrium due to the initial loads. Hence, the elastic modal accelerations and

velocities for all times are equal to zero in the steady-state condition:

[_ ss] • ss-- [_ ] --[o]
(20)

Considering this, Eq. (19) is rewritten as

[Keel[_,_s] _ [p_] (21)

The steady-state elastic modal displacements are solved for as

[_'S] [ .... [[-- I (22)• -- _ee3 re]

Each column of steady-state elastic modal displacements is defined as I%l. The values within {q,,I are constant over
all time instants.

The steady-state rigid-body modal response is found via Eq. (18). Since these DOF are associated with the rigid-body

frequencies of the system,

[Brr] --[Krr] --[0] (23)

and Eq. (18) is rewritten as

•"ss (24)
[Mrr][_r ] -- [pr I]

6



Due to the normalization of the system mode shapes, [M,T] is an identity matrix, and Eq. (24) reduces to

[_7]o tPh (25)

The steady-state rigid-body modal accelerations are simply the accelerations due to the initial loads on the system,
or

[_s] --- [a] (26}

where each column of [a] corresponds to the rigid-body modal accelerations, [al, due to the initial loads at time

t=0.0. The values within lal are constant over all times. The steady-state rigid-body modal velocities and

displacements are found using the kinematic equations. The steady-state rigid-body modal velocities at each time

instant ti are

• i.q_ (27)
{_r } -- tila}

and the corresponding displacements are

Substituting the steady-state responses into Eqs. (14), (15), and (16), the total modal responses at each time instant
ti are:

[,2}+. _-t i lal

[ {qo}

(29)

F/,,,a,tl_b "Ii_"% +
[ _ LiOJ

(30)

+ I lal

tim

(31)

The exact mode superposition transient solution methodology presented above has been implemented within the
NASA LeRC coupled loads methodology.



Implementation

In order to solve for the total modal response of a system with initial conditions using MSC/NASTRAN uncoupled

integration, a DMAP Alter can be written for a MSC/NASTRAN solution sequence, or a custom DMAP sequence

can be developed. To implement the solution procedure within the NASA LeRC coupled loads methodology, the only

modifications required were made to the custom DMAP sequence QTRAN [2]. The sequence is used to solve for

system modal transient responses. As mentioned previously, the limitation of the DMAP had been that solving for

modal responses of systems with initial conditions was only possible via the coupled integration routine within

module TRD1. After implementing the theory presented in the previous section, solving for the responses of such

systems is possible via either the coupled or uncoupled integrators available within TRD 1.

The exact mode superposition algorithm within the DMAP sequence QTRAN is as follows. To form the system

modal mass, damping, and stiffness matrices as shown in Eq. (8), module GKAM is called. The physical loads

applied to the system are assembled in a separate run and stored as matrix [PDT]. To form the shifted loads matrix,
the first column of [PDT] is subtracted from all columns of [PDT]. Hence, all physical loads are shifted by the loads

at time t=0.0, and the shifted transient load at time t--0.0 is equal to zero. Using the system mode shapes, the shifted

and initial load matrices are transformed from physical to modal space. With the system modal mass, damping,

stiffness, and shifted loads defined, module TRD1 is called to solve for the shifted modal response shown by

Eq. (12). It is important to note that since the system modal equations of motion are uncoupled with zero valued

initial conditions, the uncoupled integration routine is used.

To solve for the steady-state system modal response defined by Eq. (13), several matrices are first generated. As

described in the previous section, the system initial conditions are computed such that steady-state equilibrium is

reached due to the initial applied loads at time t=0.0. The steady-state modal response is thus the system response

due to constant loads appfied to the system which are equal to the initial loads. To generate the steady-state response,

two unknowns must be determined: the elastic modal initial conditions, {%}, and the steady-state rigid-body modal

accelerations, {a}. The elastic modal initial conditions are found via Eq. (22). The steady-state rigid-body modal

accelerationsare found via Eq. (25).

The steady-state modal elastic velocities and accelerations are zero because the system is assumed to reach

equilibrium before the analysis begins. The first step in generating the steady-state rigid-body modal velocities and

displacements is forming a vector of integration output times. The output times are stored in table FOL during

original processing of the applied loads in a preceding run. Through a series of DMAP calls, the FOL table is read,
and the time values are stored in a vector. This vector of times is used to generate the velocities of Eq. (27). By

squaring each term of the time vector, the resulting vector of squared times is used to generate the displacements

defined in Eq. (28).

Given the steady-state elastic and steady-state rigid-body modal response matrices, a series of MERGE calls are made
to form one matrix of steady-state modal responses. This matrix is then added to the matrix of shifted modal transient

responses (see Eqs. (29), (30), and (31)) to form the final matrix of total modal responses of the system, [UHVF].
The modal responses are used throughout the remaining coupled loads methodology to perform physical data

recovery operations.

Numerical Example

In order to exercise the new DMAP to the fullest extent and compare the results to an analytical (closed-form)

solution, the following numerical example was developed. The example is that of a three DOF flee-flee system

consisting of three masses and two springs. The system is shown in Fig. 1. Each mass is assigned a unit value, and
the ratio of each stiffness to a mass is 100. Associated with the three DOF system is one rigid-body system mode

and two elastic system modes. The mass and stiffness values for the system are such that the system circular natural

frequencies are 0.0, 10.0, and 17.32 rad/sec. All modal ])OF were retained, and the first DOF corresponds to the

system rigid-body mode.



Applied to the system is the physical transient load shown in Fig. 2. It is a cosine function with a circular frequency
of 15.0 rad/sec. Note that the load is nonzero at time t=0.0, and the load can be decomposed into two loads as shown

in Fig. 2. Given the nonzero load at time t---0.0, the system is assumed to reach steady-state equilibrium before the

analysis begins. Based on the theory presented previously, the system modal initial conditions are as follows: zero

value rigid-body modal displacement and velocity and elastic modal velocities and accelerations, and nonzero value

rigid-body modal acceleration and elastic modal displacements.

The system modal responses for the numerical example were solved for using the new exact mode superposition
method. The results were then compared to the closed-form analytical solution. Time histories of the modal

accelerations, velocities, and displacements are shown in Fig. 3 through Fig. 5, respectively. Comparisons between

maxima and minima data for the two solutions are shown in Table 1. From the figures and table, it is clear that the

solutions obtained using the exact mode superposition algorithm are in exact agreement with the analytical solutions.

Another numerical example using a real-world engineering problem was analyzed to compare the performances of

the exact mode superposition methodology versus a solution methodology using a coupled integration routine. The

results of this study are presented in [5].

Conclusion

A solution algorithm has been implemented using MSC/NASTRAN DMAP whereby system modal equations of

motion with initial conditions can be solved via the uncoupled integration routine within DMAP module TRD1. The

basis for the algorithm is that the total modal response due to applied loads on a system can be solved for as the

superposition of a shifted transient response and a steady-state response due to initial loads. The exact mode

superposition methodology has been implemented as an enhancement to the NASA LeRC coupled loads

methodology. It has been shown via a numerical example that the exact mode superposition method is very accurate

for solving system modal equations of motion with initial conditions.

[1]

[2]

[3]

[4]

[5]
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Table 1. Numerical Example Results

Modal Response

Acceleration

Velocity

Displacement

Minimum

Maximum

Minimum

Ma_mum

Minimum

Ma_mum

Ratio of Numerical Value to Analytical Value

Extrema Response and Time of Occurrence*

Modal DOF 1

1.000

(1.ooo)

1.ooo

(1.ooo)

0.999

0.ooo)

1.000

(1.000)

Modal DOF 2

1.000

(1.ooo)

1.000

(i.ooo)

Modal DOF 3

0.999

(1.000)

0.999

(1.000)

0.999

(l.ooo)

1.ooo

(1 .ooo)

1.ooo 0.999

(1.000) (1.000)

0.997 1.000

(1.000) (1.000)

1.000 1.000

(1.000) (1.000)

1.000

(1.000)

* Ratio of time of occurrence values shown in parentheses.
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